Free Academic Seminars And Projects Reports

Full Version: high speed dsp architectures
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
[attachment=508]
EVOLUTION OF DSP PROCESSORS

INTRODUCTION

Digital Signal Processing is carried out by mathematical operations. Digital Signal Processors are microprocessors specifically designed to handle Digital Signal Processing tasks. These devices have seen tremendous growth in the last decade, finding use in everything from cellular telephones to advanced scientific instruments. In fact, hardware engineers use "DSP" to mean Digital Signal Processor, just as algorithm developers use "DSP" to mean Digital Signal Processing.

DSP has become a key component in many consumer, communications, medical, and industrial products. These products use a variety of hardware approaches to implement DSP, ranging from the use of off-the-shelf microprocessors to field-programmable gate arrays (FPGAs) to custom integrated circuits (ICs). Programmable DSP processors, a class of microprocessors optimized for DSP, are a popular solution for several reasons.

In comparison to fixed-function solutions, they have the advantage of potentially being reprogrammed in the field, allowing product upgrades or fixes. They are often more cost-effective than custom hardware, particularly for low-volume applications, where the development cost of ICs may be prohibitive. DSP processors often have an advantage in terms of speed, cost, and energy efficiency.

DSP ALGORITHMS MOULD DSP ARCHITECTURES

From the outset, DSP processor architectures have been moulded by DSP algorithms. For nearly every feature found in a DSP processor, there are associated DSP algorithms whose computation is in some way eased by inclusion of this feature. Therefore, perhaps the best way to understand the evolution of DSP architectures is to examine typical DSP algorithms and identify how their computational requirements have influenced the architectures of DSP processors