Free Academic Seminars And Projects Reports
Jointly Optimal Source-Flow, Transmit-Power, and Sending-Rate Control for Maximum-Th - Printable Version

+- Free Academic Seminars And Projects Reports (https://easyreport.in)
+-- Forum: Project Ideas And Disscussion (https://easyreport.in/forumdisplay.php?fid=32)
+--- Forum: Engineering Project Ideas (https://easyreport.in/forumdisplay.php?fid=33)
+---- Forum: Computer Science Project Ideas (https://easyreport.in/forumdisplay.php?fid=36)
+---- Thread: Jointly Optimal Source-Flow, Transmit-Power, and Sending-Rate Control for Maximum-Th (/showthread.php?tid=1620)



Jointly Optimal Source-Flow, Transmit-Power, and Sending-Rate Control for Maximum-Th - Debasis mohany - 08-16-2017

Abstract Emerging media overlay networks for wireless applications aim at delivering Variable Bit Rate (VBR) encoded media contents to nomadic end users by exploiting the (fading-impaired and time-varying) access capacity offered by the last-hop wireless channel. In this application scenario, a still open question concerns the closed-form design of control policies that maximize the average throughput sent over the wireless last hop, under constraints on the maximum connection bandwidth available at the Application (APP) layer, the queue capacity available at the Data Link (DL) layer, and the average and peak energies sustained by the Physical (PHY) layer. The approach we follow relies on the maximization on a per-slot basis of the throughput averaged over the fading statistic and conditioned on the queue state, without resorting to cumbersome iterative algorithms. The resulting optimal controller operates in a cross-layer fashion that involves the APP, DL, and PHY layers of the underlying protocol stack. Finally, we develop the operating conditions allowing the proposed controller also to maximize the unconditional average throughput (i.e., the throughput averaged over both queue and channel-state statistics). The carried out numerical tests give insight into the connection bandwidth-versus-queue delay trade-off achieved by the optimal controller.
projects9.com
Phone : +91-9618855666
+91-8008855666
Email : [email protected]