Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
ADVANCED COMMUNICATION THROUGH FLESH REDTACTON
#1

[attachment=15181]
ABSTRACT:
Our body could soon be the backbone of a broadband personal data network linking your mobile phone or MP3 player to a cordless headset, your digital camera to a PC or printer, and all the gadgets you carry around to each other. RedTacton is a new; it is completely distinct from wireless and infrared. A transmission path is formed at the moment a part of the human body in contact with a RedTacton transceiver. Physically separating ends the contact and thus ends communication. Human Area Networking technology that uses the surface of the human body as a safe, high speed network transmission path. Uses the minute electric field emitted on the surface of the human body .Technically according to the user's natural, physical movements. Communication is possible using any body surfaces, such as the hands, fingers, arms, feet, face, legs or torso. RedTacton works through shoes and clothing as well. Here, the human body acts as a transmission medium supporting half-duplex communication at 10Mbit/s. The key component of the transceiver is an electric-field sensor implemented with an electro optic crystal and laser light.
INTRODUCTION:
NTT , the Japanese telecoms group, and the team of scientists that invented the Red Tacton system. "Tacton" because with this technology, communication starts by touching (Touch), leading to various actions (Act on). We then added the color red to convey the meaning of warmth in communication. Combining these phrases led to the name, "RedTacton". Human society is entering an era of ubiquitous computing, when networks are seamlessly interconnected and information is always accessible at our fingertips. The practical implementation of ubiquitous services requires three levels of connectivity: Wide Area Networks (WAN), typically via the Internet, to remotely connect all types of severs and terminals; Local Area Networks (LAN), typically via Ethernet or Wi-Fi connectivity among all the information and communication appliances in offices and homes; and Human Area Networks (HAN) for connectivity to personal information, media and communication appliances within the much smaller sphere of ordinary daily activities-- the last one meter. NTT's RedTacton is a break-through technology that, for the first time, enables reliable high-speed HAN. In the past, Bluetooth, infrared communications (IrDA), radio frequency ID systems (RFID), and other technologies have been proposed to solve the "last meter" connectivity problem. However, they each have various fundamental technical limitations that constrain their usage, such as the precipitous fall-off in transmission speed in multi-user environments producing network congestion.
Fig: set of connections
RedTacton takes a different technical approach. Instead of relying on electromagnetic waves or light waves to carry data, RedTacton uses weak electric fields on the surface of the body as a transmission medium. A RedTacton transmitter couples with extremely weak electric fields on the surface of the body. The weak electric fields pass through the body to a RedTacton receiver, where the weak electric fields affect the optical properties of an electro-optic crystal. The extent to which the optical properties are changed is detected by laser light which is then converted to an electrical signal by a detector circuit.
FUNCTIONING:
Using a new super-sensitive photonic electric field sensor, RedTacton can achieve duplex communication over the human body at a maximum speed of 10 Mbps.
Fig: functioning
1. The RedTacton transmitter induces a weak electric field on the surface of the body.
2. The RedTacton receiver senses changes in the weak electric field on the surface of the body caused by the transmitter.
3. RedTacton relies upon the principle that the optical properties of an electro-optic crystal can vary according to the changes of a weak electric field.
4. RedTacton detects changes in the optical properties of an electro-optic crystal using a laser and converts the result to an electrical signal in a optical receiver circuit.
Note that RedTacton transceivers which integrate transmitters and receivers are also available.
Reply



Forum Jump:


Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 iAndrew & Melroy van den Berg.