Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
ppt on biodiesel extraction from waste plastic material
#1

ppt on biodiesel extraction from waste plastic material

Thermal depolymerization (TDP) is a depolymerization process using hydrous pyrolysis for the reduction of complex organic materials (usually waste products of various sorts, often biomass and plastic) into light crude oil. It mimics the natural geological processes thought to be involved in the production of fossil fuels. Under pressure and heat, long chain polymers of hydrogen, oxygen, and carbon decompose into short-chain petroleum hydrocarbons with a maximum length of around 18 carbons.

Plastic Fuel
All around the globe companies and individuals are starting to produce fuel from waste plastic. As only 8% of waste plastic is recycled in the U.S., 15% in Western Europe, and much less in developing countries, this reuse of plastic could potentially keep enormous amounts of plastic out of landfills and out of the oceans. Over 500 billion pounds of new plastic is manufactured each year and roughly 33% of that is single use and thrown away. As so little plastic is recycled, we need to reframe plastic waste as an underused resource vs landfill destined. If all plastic waste made it into the landfill, it would surely be mined in the future, but currently all plastic waste does not make it into our landfills. The United Nations estimates plastic accounts for four-fifths of the accumulated garbage in the world's oceans. We need to stop polluting our oceans with plastic before it is too late, and start collecting all plastics suitable for this new fairly simple technology, a technology that is available now.

Thermal depolymerization (TDP) is a depolymerization process using hydrous pyrolysis for the reduction of complex organic materials (usually waste products of various sorts, often biomass and plastic) into light crude oil. It mimics the natural geological processes thought to be involved in the production of fossil fuels. Under pressure and heat, long chain polymers of hydrogen, oxygen, and carbon decompose into short-chain petroleum hydrocarbons with a maximum length of around 18 carbons.
In the method used by CWT, the water improves the heating process and contributes hydrogen to the reactions.

In the Changing World Technologies (CWT) process, the feedstock material is first ground into small chunks, and mixed with water if it is especially dry. It is then fed into a pressure vessel reaction chamber where it is heated at constant volume to around 250 C. Similar to a pressure cooker (except at much higher pressure), steam naturally raises the pressure to 600 psi (4 MPa) (near the point of saturated water). These conditions are held for approximately 15 minutes to fully heat the mixture, after which the pressure is rapidly released to boil off most of the water (see: Flash evaporation). The result is a mix of crude hydrocarbons and solid minerals. The minerals are removed, and the hydrocarbons are sent to a second-stage reactor where they are heated to 500 C, further breaking down the longer hydrocarbon chains. The hydrocarbons are then sorted by fractional distillation, in a process similar to conventional oil refining.

The CWT company claims that 15 to 20% of feedstock energy is used to provide energy for the plant. The remaining energy is available in the converted product. Working with turkey offal as the feedstock, the process proved to have yield efficiencies of approximately 85%; in other words, the energy contained in the end products of the process is 85% of the energy contained in the inputs to the process (most notably the energy content of the feedstock, but also including electricity for pumps and natural gas or woodgas for heating). If one considers the energy content of the feedstock to be free (i.e., waste material from some other process), then 85 units of energy are made available for every 15 units of energy consumed in process heat and electricity. This means the "Energy Returned on Energy Invested" (EROEI) is (6.67), which is comparable to other energy harvesting processes. Higher efficiencies may be possible with drier and more carbon-rich feedstocks, such as waste plastic.

By comparison, the current processes used to produce ethanol and biodiesel from agricultural sources have EROEI in the 4.2 range, when the energy used to produce the feedstocks is accounted for (in this case, usually sugar cane, corn, soybeans and the like). These EROEI values are not directly comparable, because these EROEI calculations include the energy cost to produce the feedstock, whereas the above EROEI calculation for thermal depolymerization process (TDP) does not.

The process breaks down almost all materials that are fed into it. TDP even efficiently breaks down many types of hazardous materials, such as poisons and difficult-to-destroy biological agents such as prions.[citation needed]
Reply

#2
ppt on biodiesel extraction from waste plastic material

ABSTRACT

This paper discuss about the crude oil preparation from the plastic bags. The main of this paper is to convert the waste plastics in to the resources. The plastic consist of the synthetic and organic materials. It has the high molecular mass. The fuel will be produced from the plastic wastes. The conversion of the plastic to the fuel will be d pend upon the level of the plastics. In this it will require feed stocks. It will perform various composite reaction to convert the plastic wastes into crude oil. The conversion of waste plastics into fuel is depend upon the type of the plastic that to be used for the conversion. Based upon the property.
Reply

#3
biodiesel from svo and other oil bearing seeds is used but from plastic material ,it is new feedstock .
pls provide me the presentation so that i can know little bit about it
Reply



Forum Jump:


Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 iAndrew & Melroy van den Berg.