Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
fuzzy based washing machine
#1

Fuzzy based Washing Machine

Fuzzy Logic has played a pivotal part in this age of rapid technological development .In this paper we have elaborated on the automation process used in a washing machine. This paper has focused on the two subsystems of the washing machine namely the sensor mechanism and the controller unit. It also discuss on the use of singletons for fuzzy sets.

This paper also highlights the use of a fuzzy controller to give the correct wash time. The use of fuzzy controller has the advantage of managing time, increasing equipment effiency and diagnosing malfunctions.

INTRODUCTION

Classical feedback control theory has been the basis for the development of simple automatic control systems .It is easily comprehensible principle and relatively simple implementation has been the main reason for its wide applications in industry. Such fixed-gain feedback controllers are insufficient, however to compensate for parameter variations in the plant as well as to adapt to changes in the environment. The need to overcome such problems and to have a controller well-tuned not just for one operating point for a whole range of operating points has motivated the idea of an adaptive controller.

In order to illustrate some basic concepts in fuzzy logic consider a simplified example of a thermostat controlling a heater fan illustrated in fig.1.The room temperature detected through a sensor is input to a controller which outputs a control force to adjust the heater fan speed.

A conventional thermostat works like an ON/OFF switch. If we set it at 78F then the heater is activated only when the temperature falls below 75F.When it reaches 81F the heater is turned off .As a result the desired room temperature is either too warm or too hot.

A fuzzy thermostat works in shades of gray where the temperature is treated as a series of overlapping ranges .For example, 78F is 60% warm and 20% hot .The controller is programmed with simple if-then rules that tell the heater fan how fast to run.

As a result, when the temperature changes the fan speed will continuously adjust to keep the temperature at desired level. Our first step in designing such a fuzzy controller is to characterize the range of values for the input and output variables of the controller.

Then we assign labels such as cool for the temperature and high for the fan speed, and we write a set of simple English-like rules to control the system. Inside the controller all temperature regulating actions will be based on how the current room temperature falls into these ranges and the rules describing the system behavior .The controller's output will vary continuously to adjust the fan speed.

The temperature controller described above can be defined in four simple rules:

If temperature is COLD then fan speed is HIGH If temperature is COOL then fan speed is MEDIUM If temperature is WARM then fan speed is LOW If temperature is HOT then fan speed is ZERO Here the linguistic variables cool; warm, high, etc. are labels, which refer to the set of overlapping values. These triangular shaped values are called membership functions.
Reply

#2
Fuzzy Logic has played a pivotal part in this age of rapid technological development .In this paper we have elaborated on the automation process used in a washing machine. This paper has focused on the two subsystems of the washing machine namely the sensor mechanism and the controller unit. It also discuss on the use of singletons for fuzzy sets. This paper also highlights the use of a fuzzy controller to give the correct wash time. The use of fuzzy controller has the advantage of managing time, increasing equipment effiency and diagnosing malfunctions.

INTRODUCTION

Classical feedback control theory has been the basis for the development of simple automatic control systems .It is easily comprehensible principle and relatively simple implementation has been the main reason for its wide applications in industry. Such fixed-gain feedback controllers are insufficient, however to compensate for parameter variations in the plant as well as to adapt to changes in the environment. The need to overcome such problems and to have a controller well-tuned not just for one operating point for a whole range of operating points has motivated the idea of an adaptive controller.

In order to illustrate some basic concepts in fuzzy logic consider a simplified example of a thermostat controlling a heater fan illustrated in fig.1.The room temperature detected through a sensor is input to a controller which outputs a control force to adjust the heater fan speed.

A conventional thermostat works like an ON/OFF switch. If we set it at 78F then the heater is activated only when the temperature falls below 75F.When it reaches 81F the heater is turned off .As a result the desired room temperature is either too warm or too hot.

A fuzzy thermostat works in shades of gray where the temperature is treated as a series of overlapping ranges .For example, 78F is 60% warm and 20% hot .The controller is programmed with simple if-then rules that tell the heater fan how fast to run. As a result, when the temperature changes the fan speed will continuously adjust to keep the temperature at desired level. Our first step in designing such a fuzzy controller is to characterize the range of values for the input and output variables of the controller. Then we assign labels such as cool for the temperature and high for the fan speed, and we write a set of simple English-like rules to control the system. Inside the controller all temperature regulating actions will be based on how the current room temperature falls into these ranges and the rules describing the system behavior .The controller's output will vary continuously to adjust the fan speed.

The temperature controller described above can be defined in four simple rules:

If temperature is COLD then fan speed is HIGH
If temperature is COOL then fan speed is MEDIUM
If temperature is WARM then fan speed is LOW
If temperature is HOT then fan speed is ZERO
Here the linguistic variables cool; warm, high, etc. are labels, which refer to the set of overlapping values. These triangular shaped values are called membership functions.
Reply

#3
Fuzzy Logic Control of Washing Machines
Abstract
Washing machines are a common feature today in the household.a washing machine saves the effort put in brushing, agitating and washing the cloth.different type of clothes need different amount of washing time but which cloth needs what amount of agitation time is a issue which has not been dealt with properly.The paper describes the procedure that can be used to get a suitable washing time for different cloths.The method is based on taking non-precise inputs from the sensors, subjecting them to fuzzy arithmetic and obtaining a crisp
value of the washing time.

Problem Definition
To automate the washing process, we use sensors to detect the parameters like. volume of clothes, degree and type of dirt. The sensor system provides external input signals into the machine from
which decisions can be made.The controller makes the decision and gives the output to the external world.Fuzzy logic is employed because a fuzzy logic
controlled washing machine controller gives the correct wash time although a precise model of the input/output relationship is not available.

Details about the Problem
The problem in this paper has been simplifi ed by using only two variables. The two inputs are:
1. Degree of dirt
2. Type of dirt
The type of dirt is determined by the time of saturation, the time it takes to reach saturation.The degree of dirt is determined by the transparency of the wash water.

Full report:

[attachment=1850]
Reply

#4
I want FUZZY BASED WASHING MACHIN SEMINAR with full information in IEE format. please its urgent.for today afternoon. please mail to [email protected]. PLEASE it's very urgent.
Reply

#5
Hey,
visit this thread for fuzzy based washing machines:
http://seminarsprojects.net/Thread-fuzzy...hine--7046
Reply

#6
i want fuzzy based washing machine documentation,material and presentation
Reply



Forum Jump:


Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 iAndrew & Melroy van den Berg.