Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
MPEG-7 full report
#1

MPEG-7

[attachment=16875]

Introduction
Accessing audio and video used to be a simple matter - simple because of the simplicity of the access mechanisms and because of the poverty of the sources. An incommensurable amount of audiovisual information is becoming available in digital form, in digital archives, on the World Wide Web, in broadcast data streams and in personal and professional databases, and this amount is only growing. The value of information often depends on how easy it can be found, retrieved, accessed, filtered and managed.
The transition between the second and third millennium abounds with new ways to produce, offer, filter, search, and manage digitized multimedia information. Broadband is being offered with increasing audio and video quality and speed of access. The trend is clear: in the next few years, users will be confronted with such a large number of contents provided by multiple sources that efficient and accurate access to this almost infinite amount of content seems unimaginable today. In spite of the fact that users have increasing access to these resources, identifying and managing them efficiently is becoming more difficult, because of the sheer volume. This applies to professional as well as end users. The question of identifying and managing content is not just restricted to database retrieval applications such as digital libraries, but extends to areas like broadcast channel selection, multimedia editing, and multimedia directory services.

Context of MPEG-7
Audiovisual information plays an important role in our society, be it recorded in such media as film or magnetic tape or originating, in real time, from some audio or visual sensors and be it analogue or, increasingly, digital. Everyday, more and more audiovisual information is available from many sources around the world and represented in various forms (modalities) of media, such as still pictures, graphics, 3D models, audio, speech, video, and various formats. While audio and visual information used to be consumed directly by the human being, there is an increasing number of cases where the audiovisual information is created, exchanged, retrieved, and re-used by computational systems. This may be the case for such scenarios as image understanding (surveillance, intelligent vision, smart cameras, etc.) and media conversion (speech to text, picture to speech, speech to picture, etc.).

MPEG-7 Objectives
In October 1996, MPEG started a new work item to provide a solution to the questions described above. The new member of the MPEG family, named "Multimedia Content Description Interface" (in short MPEG-7), provides standardized core technologies allowing the description of audiovisual data content in multimedia environments. It extends the limited capabilities of proprietary solutions in identifying content that exist today, notably by including more data types.
Audiovisual data content that has MPEG-7 descriptions associated with it, may include: still pictures, graphics, 3D models, audio, speech, video, and composition information about how these elements are combined in a multimedia presentation (scenarios). A special case of these general data types is facial characteristics.

Scope of the Standard
MPEG-7 addresses applications that can be stored (on-line or off-line) or streamed (e.g. broadcast, push models on the Internet), and can operate in both real-time and non real-time environments. A real-time environment in this context means that the description is generated while the content is being captured.
Reply



Forum Jump:


Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 iAndrew & Melroy van den Berg.