Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Biological Laboratory Robotics
#1

Biological Laboratory Robotics

[attachment=15908]

Biological and chemical samples, in either liquid or solid state, are stored in vials, plates or tubes. Often, they need to be frozen and/or sealed to avoid contamination or to retain their biological and/or chemical properties. Specifically, the life science industry has standardized on a plate format, known as the microtiter plate, to store such samples.
The microtiter plate standard was formalized by the Society for Biomolecular Screening in 1996. It typically has 96, 384 or even 1536 sample wells arranged in a 2:3 rectangular matrix. The standard governs well dimensions (e.g. diameter, spacing and depth) as well as plate properties (e.g. dimensions and rigidity).
A number of companies have developed robots to specifically handle SBS microplates. Such robots may be liquid handlers which aspirates or dispenses liquid samples from and to these plates, or "plate movers" which transport them between instruments.
Instrument companies have designed plate readers which can carry out detect specific biological, chemical or physical events in samples stored in these plates. These readers typically use optical and/or computer vision techniques to evaluate the contents of the microtiter plate wells.
Advantages and Disadvantages
Advantages
Faster processing (Note automation is not always faster than a human operator)
Increased repeatability
Increased productivity
Improved efficiency
High reproducibility
Establish safer working environments
Reduction in materials wastage due to optimized process variables
Ability to perform work continuously unaffected by human constraints
Able to perform work in and around harsh environments.
Withdraws staff from boring, repetitive tasks
Disadvantages
Single / one off sample assessments are expensive
Many laboratory techniques have not yet been developed for robotic automation
Difficult to automate in instances where visual analysis / recognition / comparison is required
Analysis is limited by available sensory inputs
Increases job shortages

The Common Emitter Amplifier is one of the three basic transistor amplifier configurations. In this experiment, the student will build and investigate a basic NPN common emitter transistor amplifier. It is assumed that the student has had some background in transistor amplifier theory, including the use of ac equivalent circuits. The student is expected to develop his or her own procedure for performing the lab experiment, after having done a complete prelab analysis, and then analyze, and thoughtfully summarize, the results of the experiment in a lab report.

[attachment=15909]
Reply



Forum Jump:


Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 iAndrew & Melroy van den Berg.