Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Electrodeless lamp ( Induction Lamp )
#1

[attachment=15266]
1. INTRODUCTION
An electrodeless lamp is a light source in which the power required to generate light is transferred from the outside of the lamp envelope by means of (electro)magnetic fields, in contrast with a typical electrical lamp that uses electrical connections through the lamp envelope to transfer power. There are three advantages of eliminating electrodes:
Extended lamp life, because the electrodes are usually the limiting factor in lamp life.
The ability to use high efficiency light-generating substances that would react with metal electrodes in normal lamps.
Improved collection efficiency because the source can be made very small without shortening life - a problem in electroded lamps
Two systems are described below one, plasma lamps, based on the use of radio waves energizing a bulb filled with sulfur or metal halides, the other, fluorescent induction lamps, based upon conventional fluorescent lamp phosphors.
2. HISTORY
Nikola Tesla demonstrated wired and wireless transfer of power to electrodeless fluorescent and incandescent lamps in his lectures and articles in the 1890s, and subsequently patented a system of light and power distribution on those principles. In the lecture before the AIEE, May 20, 1891, titled Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination [1] and US patent 454622, among many other references in the technical and popular press are found countless records for Tesla's priority in this field. A suit filed by Tesla against J. J. Thomson for priority on the patent was subsequently granted in Tesla's favor. The transcripts of the case languish currently in archives, awaiting processing, and eventual publishing. Noting the diagrams in Tesla's lectures and patents, a striking similarity of construction to electrodeless lamps that are available on the market currently is readily apparent. Further, a statement in 1929 by Tesla, published in The World :
Surely, my system is more important than the incandescent lamp, which is but one of the known electric illuminating devices and admittedly not the best. Although greatly improved through chemical and metallurgical advances and skill of artisans it is still inefficient, and the glaring filament emits hurtful rays responsible for millions of bald heads and spoiled eyes. In my opinion, it will soon be superseded by the electrodeless vacuum tube which I brought out thirty-eight years ago, a lamp much more economical and yielding a light of indescribable beauty and softness.
In 1967 and 1968, John Anderson of General Electric [2] [3] applied for patents for electrodeless lamps. Philips introduced their QL induction lighting systems, operating at 2.65 MHz, in 1990 in Europe and in 1992 in the US. Matsushita had induction light systems available in 1992. Intersource Technologies also announced one in 1992, called the E-lamp. Operating at 13.6 MHz, it was to be available on the US market in 1993.
In 1990, Michael Ury, Charles Wood and colleagues, formulated the concept of the sulphur lamp. With support from the United States Department of Energy, it was further developed in 1994 by Fusion Lighting of Rockville, Maryland, a spinoff of the Fusion UV division of Fusion Systems Corporation. Its origins are in microwave discharge light sources used for ultraviolet curing in the semiconductor and printing industries.
Since 1994, General Electric has produced its induction lamp Genura with an integrated ballast, operating at 2.65 MHz. In 1996, Osram started selling their Endura induction light system, operating at 250 kHz. It is available in the US as the Sylvania Icetron. In 1997 PQL Lighting Introduced in the US the Superior Life Brand Induction Lighting Systems. Most induction lighting systems are rated for 100,000 hours of use before requiring absolute component replacements.
Since 2005, AMKO SOLARA in Taiwan introduced induction lamps that are capable of dimming and IP based controls. Their lamps have a range from 12 to 400 watts and operate at 250 kHz.
From 1995, the former distributors of Fusion, Jenton / Jenact, expanded on the fact that energised UV-emitting plasmas act as lossy conductors to create a number of patents with respect to electrodeless UV lamps in the sterilisation / germicidal field.
Around 2000 a system was developed that concentrated radio frequency waves into a solid dielectric waveguide made of ceramic which energized a light emitting plasma in a bulb positioned inside. This system, for the first time, permitted an extremely bright and compact electrodeless lamps. The invention has been a matter of dispute. Claimed by Frederick Espiau (then of Luxim now of Topanga Technologies), Chandrashekhar Joshi and Yian Chang, these claims were disputed by Ceravision Limited.[4] Recently a number of the core patents were assigned to Ceravision.
In 2006 Luxim introduced a projector lamp product trade-named LIFI. The company further extended the technology with light source products in instrument, entertainment, street, area and architectural lighting applications among others throughout 2007 and 2008.
In 2009 Ceravision Limited introduced the first High Efficiency Plasma (HEP) lamp under the trade name Alvara. This lamp replaces the opaque ceramic waveguide used in earlier lamps with an optically clear quartz waveguide giving greatly increased efficiency. In previous lamps, though the burner, or bulb, was very efficient, the opaque ceramic waveguide severely obstructed the collection of light. A quartz waveguide allows all of the light from the plasma to be collected.
Reply

#2
Abstract:
electrodeless lamp is a light source in which the power required to generate light is transferred from the outside of the lamp envelope by means of (electro)magnetic fields.Two systems available noe one, plasma lamps, based on the use of radio waves energizing a bulb filled with sulfur or metal halides, and the other is, fluorescent induction lamps, based upon conventional fluorescent lamp phosphors .. and the Magnetic induction lamps are basically fluorescent lamps with electromagnets wrapped around a part of the tube, or inserted inside the lamp. In external inductor lamps, high frequency energy, from the electronic ballast, is sent through wires, which are wrapped in a coil around the ferrite inductor, creating a powerful magnet.
Reply



Forum Jump:


Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 iAndrew & Melroy van den Berg.