Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
LCD Display paper presentation
#1

[attachment=14069]
LCD Display
Liquid crystal displays (LCDs) have materials which combine the properties of both liquids and crystals. Rather than having a melting point, they have a temperature range within which the molecules are almost as mobile as they would be in a liquid, but are grouped together in an ordered form similar to a crystal.
An LCD consists of two glass panels, with the liquid crystal material sand witched in between them. The inner surface of the glass plates are coated with transparent electrodes which define the character, symbols or patterns to be displayed polymeric layers are present in between the electrodes and the liquid crystal, which makes the liquid crystal molecules to maintain a defined orientation angle.
One each polarisers are pasted outside the two glass panels. These polarisers would rotate the light rays passing through them to a definite angle, in a particular direction
When the LCD is in the off state, light rays are rotated by the two polarisers and the liquid crystal, such that the light rays come out of the LCD without any orientation, and hence the LCD appears transparent.
When sufficient voltage is applied to the electrodes, the liquid crystal molecules would be aligned in a specific direction. The light rays passing through the LCD would be rotated by the polarisers, which would result in activating / highlighting the desired characters.
The LCD s are lightweight with only a few millimeters thickness. Since the LCD s consume less power, they are compatible with low power electronic circuits, and can be powered for long durations.
The LCD s doesn t generate light and so light is needed to read the display. By using backlighting, reading is possible in the dark. The LCD s have long life and a wide operating temperature range.
Changing the display size or the layout size is relatively simple which makes the LCD s more customer friendly.
The LCDs used exclusively in watches, calculators and measuring instruments are the simple seven-segment displays, having a limited amount of numeric data. The recent advances in technology have resulted in better legibility, more information displaying capability and a wider temperature range. These have resulted in the LCDs being extensively used in telecommunications and entertainment electronics. The LCDs have even started replacing the cathode ray tubes (CRTs) used for the display of text and graphics, and also in small TV applications.
This section describes the operation modes of LCD s then describe how to program and interface an LCD to 8051 using Assembly and C.
LCD operation:
In recent years the LCD is finding widespread use replacing LED s (seven-segment LED s or other multi-segment LED s).This is due to the following reasons:
1. The declining prices of LCDs.
2. The ability to display numbers, characters and graphics. This is in contrast to LED which is limited to numbers and a few characters.
3. Incorporation of a refreshing controller into the LCD, there by relieving the CPU of the task of refreshing the LCD. In the case of LED s, they must be refreshed by the CPU to keep on displaying the data.
4. Ease of programming for characters and graphics.
Reply

#2
ABSTRACT


A liquid crystal display (LCD) is a thin, flat electronic visual display that uses the light modulating properties of liquid crystals (LCs). LCs do not emit light directly. Each pixel of an LCD typically consists of a layer of molecules aligned between twotransparent electrodes, and two polarizing filters, the axes of transmission of which are (in most of the cases) perpendicular to each other. With no actual liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. The surface of the electrodes that are in contact with the liquid crystal material are treated so as to align the liquid crystal molecules in a particular direction. This treatment typically consists of a thin polymer layer that is unidirectionally rubbed using, for example, a cloth. The direction of the liquid crystal alignment is then defined by the direction of rubbing. Electrodes are made of a transparent conductor called Indium Tin Oxide (ITO). Monochrome LCD images usually appear as blue or dark gray images on top of a grayish-white background. Color LCD displays use two basic techniques for producing color: Passive matrix is the less expensive of the two technologies. The other technology, called thin film transistor (TFT) oractive-matrix, produces color images that are as sharp as traditional CRTdisplays, but the technology is expensive.

Reply

#3
hi,
This is murali who is studying B.Tech.
Your site is very much useful for the students like me.
I want LCD Display Paper presentation also.
Thank You.

Murali
[email protected]
Reply



Forum Jump:


Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 iAndrew & Melroy van den Berg.