Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
BRAIN MACHINE INTERFACE
#1

BRAIN MACHINE INTERFACE

[attachment=649]

INTRODUCTION

Picture a time when humans see in the UV and IR portions of the electromagnetic spectrum, or hear speech on the noisy flight deck of an aircraft carrier; or when soldiers communicate by thought alone. Imagine a time when the human brain has its own wireless modem so that instead of acting on thoughts, war fighters have thoughts that act. Imagine that one day we will be able to download vast amounts of knowledge directly to our brain! So as to cut the lengthy processes of learning everything from scratch. Instead of paying to go to university we could pay to get a "knowledge implant" and perhaps be able to obtain many lifetimes worth of knowledge and expertise in various fields at a young age.

When we talk about high end computing and intelligent interfaces, we just cannot ignore robotics and artificial intelligence. In the near future, most devices would be remote/logically controlled. Researchers are close to breakthroughs in neural interfaces, meaning we could soon mesh our minds with machines. This technology has the capability to impact our lives in ways that have been previously thought possible in only sci-fi movies.

SUBJECT DETAILING

BRAIN MACHINE INTERFACE


A brain-machine interface (BMI) is an attempt to mesh our minds with machines. It is a communication channel from a human's brain to a computer, which does not resort to the usual human output pathways as muscles. It is about giving machine-like capabilities to intelligence, asking the brain to accommodate synthetic devices, and learning how to control those devices much the way we control our arms and legs today. These experiments lend hope that people with spinal injuries will be able to someday use their brain to control a prosthetic limb, or even their own arm. A BMI could, e.g., allow a paralyzed patient to convey her/his intentions to a computer program. But also applications in which healthy users can benefit from the direct brain computer communication are conceivable, e.g., to speed up reaction times. Initially theses interactions are with peripheral devices, but ultimately it may be interaction with another brain. The first peripheral devices were robotic arms. Our approach bases on an artificial neural network that recognizes and classifies different brain activation patterns associated with carefully selected mental tasks. Using BMI artificial electrical signal can stimulate the brain tissue in order to transmit some particular sensory information.

ELECTROENCEPHALOGRAPHY

Electroencephalography (EEG) is a method used in measuring the electrical activity of the brain. The brain generates rhythmical potentials which originate in the individual neurons of the brain. These potentials get summated as millions of cell discharge synchronously and appear as a surface waveform, the recording of which is known as the electroencephalogram.
The neurons, like other cells of the body, are electrically polarized at rest. The interior of the neuron is at a potential of about 70mV relative to the exterior. When a neuron is exposed to a stimulus above a certain threshold, a nerve impulse, seen as a change in membrane potential, is generated which spreads in the cell resulting in the depolarization of the cell. Shortly afterwards, repolarization occurs.
The EEG signal can be picked up with electrodes either from scalp or directly from the cerebral cortex. As the neurons in our brain communicate with each other by firing electrical impulses, this creates an electric field which travel though the cortex, the dura, the skull and the scalp. The EEG is measured from the surface of the scalp by measuring potential difference between the actual measuring electrode and a reference electrode.

BMI APPROACHES

What are the thoughts the user thinks in order to control a BMI? An ideal BMI could detect the user s wishes and commands directly. However, this is not possible with today s technology. Therefore, BMI researches have used the knowledge they have had of the human brain and the EEG in order to design a BMI. There are basically two different approaches that have been used. The first one called a pattern recognition approach is based on cognitive mental tasks.
Reply

#2
Prepared by:
Maheswara Rao.E
Bala Balaji.K

[attachment=6305]


ABSTRACT
No technology is superior if it tends to overrule human faculty. In fact, it should be other way around
Imagine that you are somewhere else and you have to control a machine which is in a remote area, where human can t withstand for a long time. In such a condition we can move to this BRAIN -MACHINE INTERFACE. It is similar to robotics but it is not exactly a robot. In the robot the interface has a sensor with controller but here the interface with human and machine. In the present wheel chair movements are done according to the patient by controlling the joystick with only up, reverse, left and right movements are possible. But if the patient is a paralyzed person, then it is a critical for the patient to take movements. Such a condition can be recovered by this approach. The main objective of this paper is to interface the human and machine, by doing this several objects can be controlled. This paper enumerates how Human and Machine can be interfaced and researches undergone on recovery of paralyzed person in their mind.

INTRODUCTION
The core of this paper is that to operate machines from a remote area . In the given BMI DEVELOPMENT SYSTEMS the brain is connected to client interface node through a neural interface nodes . The client interface node connected to a BMI SERVER which controls remote ROBOTS through a host control.
Reply



Forum Jump:


Users browsing this thread:
1 Guest(s)

Powered By MyBB, © 2002-2024 iAndrew & Melroy van den Berg.